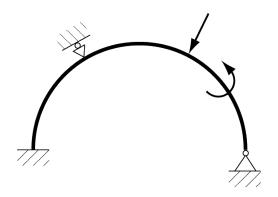
Mécanique des structures



Chapitre 11 : Systèmes hyperstatiques

Dr. Alain Prenleloup SGM BA3 2024-2025

Chapitre 10 : Énergie de déformation élastique

Rappel

$$\delta_k = \frac{\partial U}{\partial P_k}$$

Application

Résolution de problème

Menabrea de

Système hyperstatique

Généralités des systèmes hyperstatiques

Un corps est cinématiquement en équilibre si et seulement si le torseur résultant des forces extérieures qui agissent sur lui est nul (articulés)

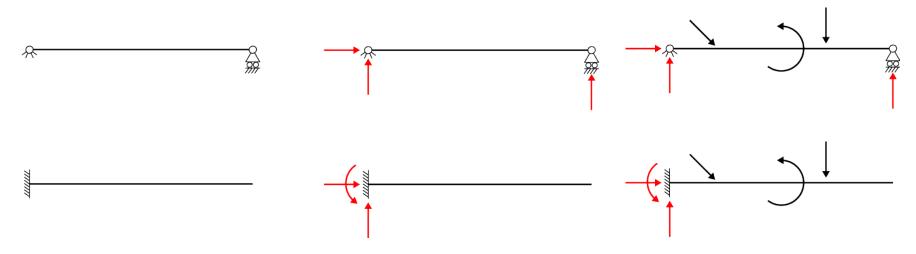
• $\sum \mathbf{R}_e = \mathbf{0}$

somme forces extérieures nulle

• $\sum \mathbf{M}_e = \mathbf{0}$

somme des moments extérieurs nulle

Exemple de 2 systèmes avec 3 inconnues et trois équations d'équilibre

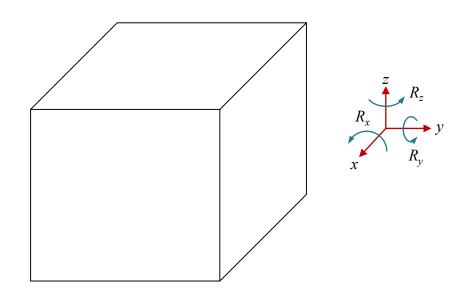


Généralités des systèmes hyperstatiques

Exemple d'un corps rigidité : 6 ddl -> 3 translations et 3 rotations

Ce corps peut-être :

- Libre ddl= 6
- Isostatique ddl = 0
- Hypostatique ddl ≥ 1
- Hyperstatique ddl < 0



Comment rendre un problème isostatique lors de la simulation numérique d'une dilatation thermique d'un corps?

Généralités des systèmes hyperstatiques

Quand les efforts intérieurs ne peuvent être déterminés en tout point par le simple jeu des équations d'équilibre, le système est dit *hyperstatique*.

Dans les systèmes, dits statiquement déterminés ou isostatiques, les réactions extérieures sont déterminées par les deux conditions d'équilibre suivantes :

• $\sum \mathbf{R}_e = \mathbf{0}$

somme forces extérieures nulle

• $\sum \mathbf{M}_e = \mathbf{0}$

somme des moments extérieurs nulle

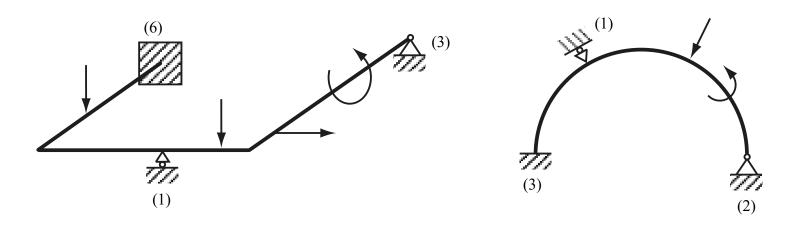
Quand le nombre p des liaisons extérieures dépasse le nombre des conditions d'équilibre, le système est *hyperstatique extérieurement*, la différence k constitue l'ordre ou degré d'hyperstaticité extérieure

- k = p 6 pour un système de l'espace
- k = p 3 pour un système plan

Généralités des systèmes hyperstatiques

Deux exemples de systèmes *hyperstatiques extérieurement*, leur ordre d'hyperstaticité respectif valant

- k = 6 + 1 + 3 6 = 4 pour la structure tridimensionnelle
- k = 3 + 1 + 2 3 = 3 pour le système bidimensionnel



Généralités des systèmes hyperstatique

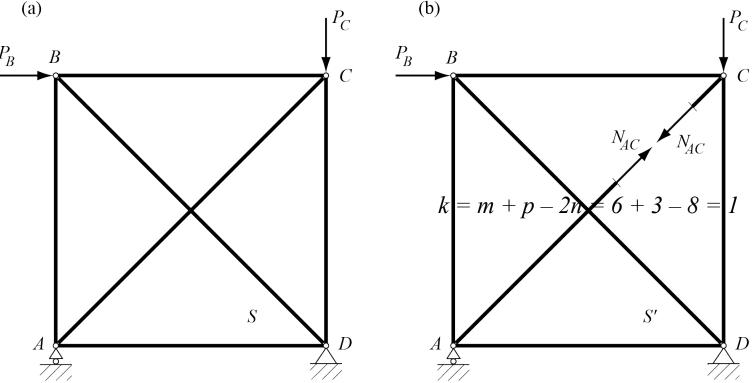
Pour calculer un système hyperstatique extérieurement S, on procède de la manière suivante :

- a) on remplace les k liaisons surabondantes par autant de forces généralisées (forces ou moments) inconnues R_1 , R_2 , ..., R_k appelées réactions hyperstatiques et choisies arbitrairement parmi les p liaisons du système, de sorte que l'on obtient le système isostatique fondamental S' dérivé du système donné S
- b) on exprime ensuite les conditions d'équilibre du système S' (six dans l'espace, trois dans le plan) ainsi que les efforts intérieurs en fonction des forces extérieures et des hyperstatiques choisies
- c) on $\frac{\text{\'etablit }k}{\text{\'etablit }k}$ conditions de déformation correspondant aux k liaisons supprimées et constituant les équations permettant de calculer les k hyperstatiques inconnues $R_1,\,R_2,\,...,\,R_k$
- d) avec les valeurs $R_1,\ R_2,\ ...,\ R_k$, on obtient les autres réactions et les efforts intérieurs du système S

Système plan de barres articulées en treillis

Un système est *hyperstatique intérieurement* quand la connaissance de toutes les réactions extérieures n'est pas suffisante pour calculer les efforts intérieurs.

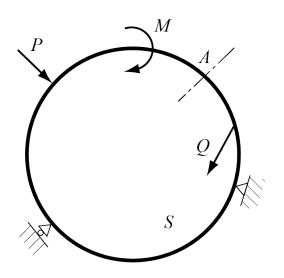
Un telle structure est hyperstatique intérieurement d'ordre k = m + p - 2n, où m désigne le nombre de barres, p est le nombre de liaisons extérieures (si p > 3, le système est déjà hyperstatique extérieurement) et n dénote le nombre total de nœuds.

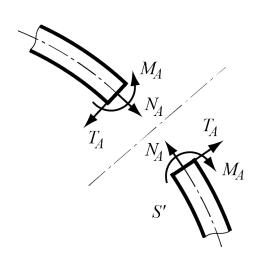


Système fermé, non-articulé

Une structure en forme de cadre ou d'anneau est *hyperstatique intérieurement* d'ordre 3 dans le plan et d'ordre 6 dans l'espace.

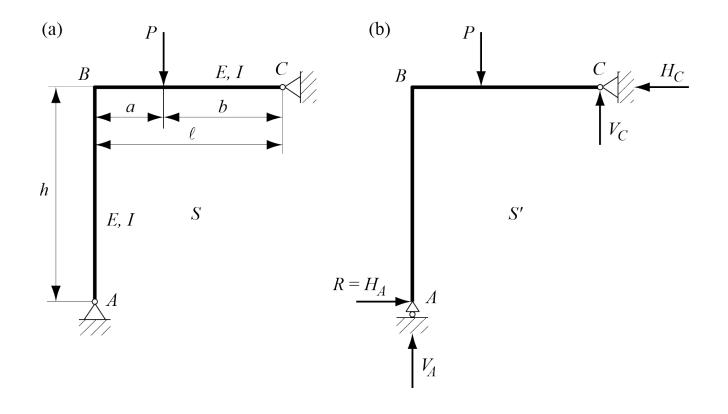
Pour obtenir un système isostatique fondamental S' du système donné S, il suffit à nouveau de remplacer les k liaisons intérieures surabondantes par des forces hyperstatiques inconnues $R_1,\ R_2,\ ...,\ R_k$ en coupant la boucle dans une section arbitraire et en considérant comme hyperstatiques les efforts intérieurs dans cette section



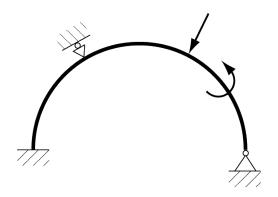


Problème 11.1

Calculer les réactions aux points A et C du système hyperstatique S



Mécanique des structures

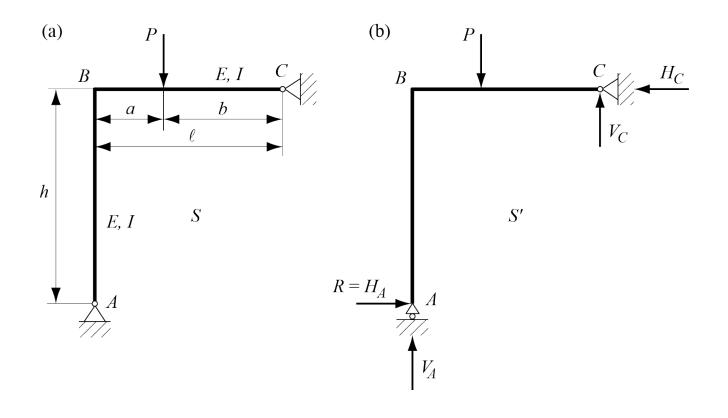


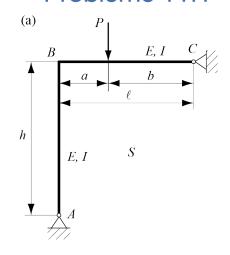
Chapitre 11 : Systèmes hyperstatiques

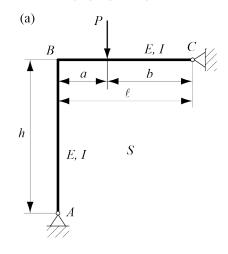
Dr. Alain Prenleloup SGM BA3 2024-2025

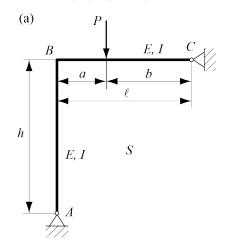
Problème 11.1

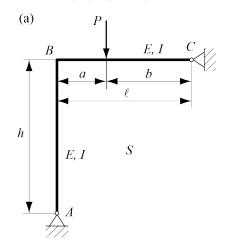
Calculer les réactions aux points A et C du système hyperstatique S



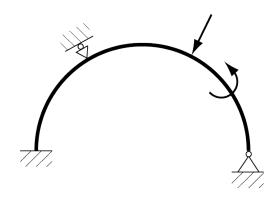








Mécanique des structures



Chapitre 11 : Systèmes hyperstatiques

Dr. Alain Prenleloup SGM BA3 2024-2025

Énoncé: Théorème de Menabrea

Enoncé du théorème : Les hyperstatiques correspondant aux liaisons surabondantes prennent les valeurs qui rendent minimum l'énergie de déformation du système.

Les réactions hyperstatiques R_1 , R_2 , ..., R_k ne pouvant fournir aucun travail au système, il suffit d'annuler les dérivées partielles de l'énergie de déformation par rapport à ces réactions, ce qui conduit aux relations complémentaires cherchées

•
$$\frac{\partial U}{\partial R_1} = 0$$
 $\frac{\partial U}{\partial R_2} = 0$... $\frac{\partial U}{\partial R_k} = 0$

Le théorème n'est autre qu'une application du principe du travail minimum à la détermination des liaisons surabondantes.

On peut établir qu'il s'agit bien d'un minimum en montrant que la deuxième différentielle totale de la forme quadratique par rapport aux hyperstatiques R_1 , R_2 , ..., R_k est toujours positive

•
$$\frac{\partial^2 U}{\partial R_1^2} > 0$$
 $\frac{\partial^2 U}{\partial R_2^2} > 0$... $\frac{\partial^2 U}{\partial R_k^2} > 0$

Démonstration : Théorème de Menabrea

Reprenons l'expression de l'énergie de déformation (seconde formule de Clapeyron) mais en séparant les forces généralisées $P_1,\,P_2,\,...,\,P_m$ appliquées au système et les hyperstatiques $R_1,\,R_2,\,...,\,R_k$

•
$$U = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} a_{ij} P_i P_j + \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{k} a_{i,m+j} P_i R_j + \frac{1}{2} \sum_{i=1}^{k} \sum_{j=1}^{m} a_{m+i,j} R_i P_j + \frac{1}{2} \sum_{i=1}^{k} \sum_{j=1}^{k} a_{m+i,m+j} R_i R_j$$

Si l'on extrait de cette expression les 2(m+k)-1 termes dépendant de l'hyperstatique R_{ℓ} ($1 \le \ell \le k$), l'énergie de déformation peut être explicitée sous la forme suivante, où U' dénote la part de l'énergie de déformation qui est indépendante de R_{ℓ}

•
$$U = \frac{1}{2} \sum_{i=1}^{m} a_{i,m+l} P_i R_l + \frac{1}{2} \sum_{j=1}^{m} a_{m+l,j} R_l P_j + \frac{1}{2} \sum_{\substack{i=1 \ i \neq l}}^{k} a_{m+i,m+j} R_i R_l$$
$$+ \frac{1}{2} \sum_{\substack{j=1 \ j \neq l}}^{k} a_{m+l,m+j} R_l R_j + \frac{1}{2} a_{m+l,m+l} R_l^2 + U'$$

Démonstration : Théorème de Menabrea

En dérivant cette relation par rapport à l'hyperstatique R_{ℓ} , on trouve

$$\frac{\partial U}{\partial R_l} = \frac{1}{2} \sum_{i=1}^m a_{i,m+l} P_i + \frac{1}{2} \sum_{j=1}^m a_{m+l,j} P_j + \frac{1}{2} \sum_{\substack{i=1 \ i \neq l}}^k a_{m+i,m+j} R_i$$

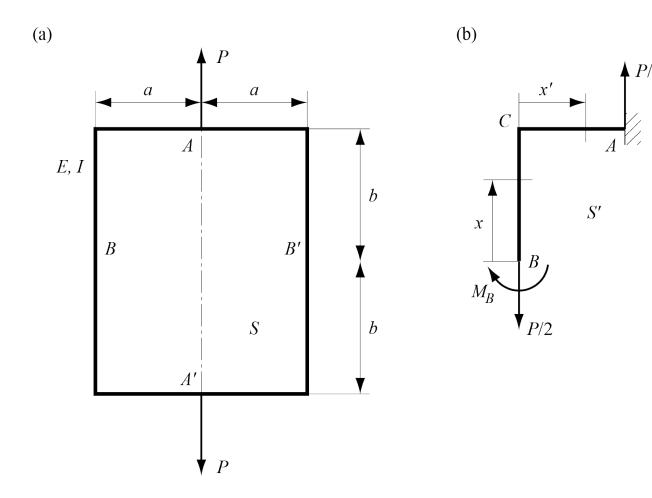
$$+ \frac{1}{2} \sum_{\substack{j=1 \ j \neq l}}^k a_{m+l,m+j} R_j + a_{m+l,m+l} R_l$$

Comme seul le dernier terme du membre droit de cette égalité contient l'hyperstatique de rang ℓ , la dérivée seconde de l'énergie de déformation par rapport à R_{ℓ} s'écrit simplement

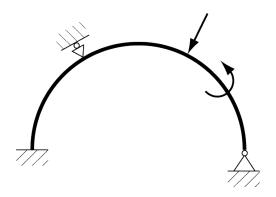
qui est bien strictement positive, puisque les coefficients d'influence directs sont nécessairement positifs, le facteur $am+\ell,m+\ell$ étant la projection sur l'axe de R_ℓ du déplacement du point d'application de R_ℓ provoqué par une force unité appliquée en ce même point dans la direction précisément de la force R_ℓ

Problème 11.3

Par le théorème de Menabrea, trouver le moment hyperstatique intérieur au point B du cadre , puis calculer le déplacement relatif des points A et A'. On ne considérera que l'énergie de flexion.



Mécanique des structures



Chapitre 11 : Systèmes hyperstatiques

Dr. Alain Prenleloup SGM BA3 2024-2025

Problème 11.3

Par le théorème de Menabrea, trouver le moment hyperstatique intérieur au point B du cadre, puis calculer le déplacement relatif des points A et A'. On ne considérera que l'énergie de flexion.

